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FOREWORD 

This report describes a portion of the results obtained on 

NASA Grant NSG 3044.  This work was done under subcontract to the 

University of Illinois, Urbana, with Prof. S.S. Wang as the Principal 

Investigator.  The prime grantee was the Massachusetts Institute of 

Technology, with Prof. F.J. McGarry as the Principal Investigator 

and Dr. J.F. Mandell as a major participant.  The NASA - LeRC Project 

Manager was Dr. C.C. Chamis. 

Efforts in this project are primarily directed towards the de- 

velopment for finite element analyses for the study of flaw growth and 

fracture of fiber composites.  This report presents exact solutions for 

edge delaminations in angle-ply composites. 
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ABSTRACT 

Edge delamination has caused severe concern in the design and 

analysis of advanced composite materials and structures. Due to its 

complex nature, very limited knowledge for the problem is currently 

available.  It involves not only geometric and material discontinuities 

but also inherently coupled mode I, II and III fracture in the layered 

anisotropic system.  Based on complex-variable stress potentials in 

the anisotropic elasticity theory and eigenfunction expansion, exact 

orders of the crack-tip stress singularity and complete field solutions 

are obtained.  Results are given for edge-delaminated composites 

subjected to uniform axial extension for illustrative purposes. 

Effects of geometric, lamination, and crack variables are determined. 

IV 



1.  INTRODUCTION 

Edge delaminatiön is frequently encountered in angle-ply compo- 

site laminates.  It is due to high stress concentrations at geometric 

boundaries and the inherently weak interlaminar strength along the ply 

interface.  The problem posed by edge delaminatiön is of great theoreti- 

cal interest.  It also is of significant technical importance in determining 

the structural integrity and damage tolerance of advanced fiber-rein- 

forced composites and their applications to advanced engineering 

structures and components.  The presence and growth of delaminatiön 

cracks from geometric boundaries of composite laminates may lead to 

severe reliability and safety problems of fiber composite materials 

and structures such as the reduction of structural stiffness, the 

exposure of the interior to adverse environmental attack, and the 

disintegration of the material, which may cause the final failure. 

Thus, understanding the basic nature of edge delaminatiön is of 

critical importance in damage characterization and accurate assessment 

of flaw criticality and structural integrity of advanced composites. 

The edge delaminatiön problem is very complex in nature and 

extremely difficult to solve • It involves geometric and materials 

discontinuities, i.e., free edges, interlaminar cracks and variation of 

ply properties in the transverse direction.  It also involves inher- 

ently coupled mode I, II and III fracture in the anisotropic layered 

material system such as angle-ply composite laminates.  Edge de- 

lamination is basically a fracture problem involving an interfacial 



crack between two highly anisotropic fiber-composite laminae 

under general loading conditions. The problem of an interfacial crack 

between two dissimilar Isotropie materials has received much atten- 

tion recently, for example, Refs. [1-12].  But the study of a de- 

lamination between strongly anisotropic fiber composite layers, 

especially in finite-dimensional laminates under general loading, 

has been very limited, to the author's knowledge.  In this paper, a 

rigorous investigation of the basic nature of the coupled opening, 

sliding and antiplane shearing fracture behavior of edge delamination 

is presented for composite laminates under uniform axial extension. 

Basic formulation of the problem based on the theory of anisotropic 

elasticity and eigenfunction expansion is given in the next section. 

General solutions and associated stress singularities for the edge 

delamination are derived in Section 3.  Fracture parameters such as 

mixed-mode stress intensity factors K , K ^  and K-ry-r as well as the 

energy release rate G are defined and determined in Section 4.  Num- 

erical results for edge delaminated composite laminates subjected 

to uniform axial loading are shown in Section 5 to illustrate the 

fundamental behavior of edge delamination cracks.  Effects of geo- 

metric, lamination and crack variables are studied in detail. 



2.  FOKMULATION 

Formulation of the delamination problem is based on the theory 

of anisotropic elasticity for nonhomogeneous solids. Well known 

Lekhnitskii's  stress  functions [13]  are introduced to establish 

governing partial differential equations for field variables.  An 

eigenfunction expansion method is employed for determining the stress 

singularity at the delamination crack tip.  The boundary collocation 

technique is then used to evaluate the complete solution for finite- 

dimensional composite laminates. 

2.1 Assumptions and Delamination Model 

Consider a composite laminate (Fig. 1) composed of unidirec- 

tional fiber-reinforced plies of uniform thicknesses, hn, h„,....h . 
i  I n 

For simplicity but without loss of generality, we restrict ourself to 

the cases of symmetric, angle-ply composite laminates with fiber 

orientations (8 /09/..../0„/81).  Ply thicknesses are also assumed to 

be symmetric with respect to the x-z plane, i.e., h- = h , h„ = h •.» 

....  The composite has a finite width 2b and is subjected to a uniform 

axial extension, £, where e = constant, along the z-axis.  The composite 

laminate is sufficiently long that, in the region far away from the 

ends, end effects are negligible by virtue of the Saint Venant 

principle.  Consequently, stresses in the laminate are independent of 

the z-axis.  The case in which stresses and displacements are independ- 

ent of z corresponds to the well known generalized plane deformation 

[13]. Edge delamination occurs in the form of a crack along the 

interface of dissimilar plies with fiber orientations, 9fc and 9k+1- 



Perfect bonding is assumed in the composite everywhere except the 

region of delamination. 

2.2 Basic Equations 

For each individual lamina, the constitutive equations in the 

structural coordinates x-y-z may be expressed by the generalized Hooke's 

law in the contracted notation as 

£i = Sij 0j (i'j = i'2"---6) (1) 

where e. and a. are strain and stress tensors, and S.., the compliance 

tensors, respectively.  The strain-displacement relationships are given 

by 

£1 = £x = U'x'        £2 = £y = V'y' (2a"b) 

£3 = £z = W'z'       £4 = Yyz = W'y + V'z' (2c_d) 

£ = Y  = w,  + u, , z,  = Y  = u>  + v, , (2e-f) 5   xz    x    z   6  'xy    y    x 

where the subscript after comma denotes the partial differentiation with 

respect to the variable. Under these assumptions, there remain three 

compatability relations: 

£    + £    = Y    > Oa) x,     y,     xy, yy   J  xx     xy 

^xz,y
+^yz,x)'y 

= 0' <3b> 

^yz,x 
+ Yxz,y),x = 0. (3c) 

For a symmetrical angle-ply composite laminate subjected to uniform axial 

strain e, it can be shown easily that 



Y    - Y    = 0, (L) xz,    yz,    ' KHJ 

y x 

since the relative angle of rotation for the symmetric composite lamin- 

ate about z-axis vanishes. 

Based on the definition of the problem, i.e., e = e = constant, 
z 

a    in Eq 1 can be expressed in terms of other stress components by 

°z  = (e " S3j aj)/S33        (J = 1.2,4,5,6). (5) 

Thus, the generalized Hooke's law may be modified to have the following 

form: 

£i = §ij °j +  ei (i'j = 1,2,4,5,6), (6a) 

where 

~Sij = Sij - S3iS3j/S33'   ei = eSi3/S33     (i'^ *  3)"        (6b> 

It can be seen from Eq 6 that e. has the role of initial strains in the 

laminate.  For the current stress formulation, it may be more convenient 

to introduce the initial stress a.     such that 
jo 

£i = ^ij(°j " ajo}' (i,j = 1,2,4,5,6), (7) 

~-l 
where a. = -S.. e..  It is possible to decompose the complete solutions 

into two parts, i.e., 

(h) + (p) a±  = a.    of (8a) 

e. = £^
h) + e<p) (8b) 

i   i     3 

where 

e[h)  = §.. a.00 and efp) = S..&T?0- o.   ). (9a-b) 1   y j      i   IJ 3       3° 



GENERAL SOLUTIONS AND ASSOCIATED STRESS SINGULARITIES FOR DELAMINATION 

3.1 Solutions for a.      and u. 
 l l 

Introducing the stress functions F(x,y) and V(x,y)  which satisfy 

equations of equilibrium identically and following the procedure by 

Lekhnitskii [13], we obtain a pair of coupled partial differential 

equations as follows: 

L4F + L Jl  = 0, (10a) 

L3F + 1 V  = 0, (10b) 

where L„, L„ and L, are linear differential operators of the second, 

third and fourth order, respectively, defined by 

L2 "  §44 £ ~  2h5  3x^7 + ~S55 W ' (1°C) 

g 3 ~ ~ g 3 ~ ~ g3 
L0  = -S0.   T—T+   (Soc  + S.,)   „   2-\ (S-i /   + Sc,)  T—r-7- 3 24 3x'3 25 46    3x^3y 14 56    3x3y^ 

+ S15  3F ' (1°d) 

3^   ~    31*     - 3^ 
L4 = S22 3x^ " 2S26 3^37 + (2S12 + S66} 3x^3y^ 

" 2S16 3x^F + Sll Sy^ 
(10e) 

Lekhnitskii [13] has shown that the general solution for Eqs 10a-10b may 

be expressed as 

6 6 

k=l k-i 



where Z, = x + p,y; the prime (') denotes differentiation of the function 

F, with respect to its argument; and p, are the roots of the algebraic 

characteristic equation 

£4(u)£2(u) - *2(u) = 0, (12a) 

and 

with 

\--WW ""WW' (12b) 

12(H)  =  S55p2  -  2~S45y  + S44, (13a) 

£3GO   -  S15p3   -   (si4+ ~S56)y2  +   (5^+ S^p  -  S^, (13b) 

£4(y)  -  Sny^  -  2S16y3  +  (23^4- S^p*   -  23^  + 3^. (13c) 

Introducing the following form for the function Ty.(\) 

5+2 
W  =  CkZk     /[(5  + 2)(5  + D], (14) 

where C, and S are arbitrary complex constants to be determined later, 

we can obtain the stress and displacement expressions as follows: 

3 

I 
k=l ^-.MVft*«**^' (15a) 

"yh>- X^ + VS^1' (15b> 

J
 k=l 

k=l 



r(h)   - -I   [C.U.Z?  + (L,., V.    Z?1' xy f;   L  k k k        k+3    k    k 
(15e) 

and 

where 

u<h) - X [w£+1+c™p* ^+1]/<4+" a6a) 
k=l 

k=l 

k=l 

\ = hA +  §12 * S14\ + S15Vk " S16^k C16d> 

qk = ~S12^k + l2lK  - ~S24nk7lik + 525\ " *26 ' (16e) 

\  = §14wk + S24/wk " S44nk/l,k + ~S45\ " _S46 ' (16f} 

The constant, $,   in Eqs 15 and 16 may be chosen that the stresses 

and displacements a.       and u.  satisfy interface continuity and 

homogeneous boundary conditions.  Taking complex conjugate of Eqs 15 

and 16, their forms are invariant; thus, <S appears as a set of complex 

conjugates, which enables to make Eqs 15 and 16 real functions by super- 

position.  Furthermore, finiteness of displacements at the origin re- 

requires that Re[6] > -1, where Re represents the real part of 6. 

3.2 Solutions for a.p) and u.p) 

Since a.  and e. in Eqs 6 and 7 are constant, we may choose a. 
10     l    H J i 

in Eq 9 as constants so that they satisfy the equations of equilibrium 



and compatibility conditions identically. For each individual lamina, 

let a.p take the following form: 

3 

k=l 

ID I 

CTy y°    k=l 

(p) = a      + I  (d, +1), 
y    yo  ,L, k   k" (17b) 

C ) 3 
Txz = Txzo + j^Vk + dk \ V' (17d) 

TS>=Txyo- J/Vk^kV' (17e) 

Substiuting Eqs 17a-17e into Eq 9b and integrating the strain-displace- 

ment relations, we obtain 

u P = j^Wk + dk pk V " V + V + % (18a) 

( )     3 v     = JA^ + "k "k "k) + ^ ~ ^ + v (18b) 

( )     3 

w        =    I   WfeVk + dk \ V   ~ U2X + "l7 + 3Z + V (18c) 

where u , v , w and oi. are related to rigid-body displacements and rota- 

tions.  The complex constants d, are required to satisfy the near-field 

traction boundary conditions and continuity conditions along the ply 

interface. 



3.3 Delamination Crack-Tip Stress Singularity 

Consider a delamination between two plies, say the kth and (k+l)th 

ply, in a composite subjected to general loading as shown in Fig. 2. 

Assuming that interlaminar crack surfaces are free from traction, we 

introduce the following boundary conditions for the eigen stresses 

(h) a.  : 
x 

<i)_ „(i) = T(i) = 0   (i = k, <j> = TT; i = k+1, <f> = -ir).   (19) a '= T   = T y    yz    xy 

The superscript h is dropped in the expression for convenience. 

Continuity conditions for displacements and interlaminar stresses 

along the interface, <f> = 0, 

{a(k),x(k),x(k)} = {a
(k+1),T(k+1),x(k+1)} (20a) 

y  ' yz ' xy      y     yz    xy 

{u(k),v(k),w(k)} = {u(k+1),v(k+1),w(k+1)}. (20b) 

Substituting Eqs 15 and 16 into 19 and 20, we obtain the following 

(k)     (k+1) 
twelve linear algebraic equations in C   and C^   : 

I  {eilT6C(k)r?k)  4- e-
ilT5C(k^ rfk)} = 0,       (J-1,2,3)     (21a) L m  im m+3 jm 

m=l 

7  {e-nr«cCfcfl)r0cU)  + eliröc(fc+l) F(k+D}  „ 0       (j=1,2>3), (21b) 
L- m jm m+3 jm 

m=l 

I  ,r(k)_Ck) , r(k) F(k), _ y ( (k+1) (k+1)   (k+1) F(k+1)} 
^{Cm rrm + Ck+3 m } " Vm   1 rm     m+3   rm 

m=l m=i 

(r=l,2,3,4,5,6),        (21c) 

_Ck). r(k)_ (k)  (k)_ (k)  (k)= (k)  (k)= (k) where r^ =1, r2m - nm , r3m - % , r4m pm , r5m qm 

r(k)=  (k)^  solving Eqs 21c for C^ and substituting the resulting 
6m   m ° m 

10 



expressions into Eqs 21a, we get 

I  {(T  '2, fe  a r,L + e   a/„xQ<* r     - 0. (21d) 2.    n   mZi tnn jm (m+3)n jm ViJ-uy 

Equations 21b and 21d consist of a system of six linear homogeneous 

algebraic equations.  For nontrival solutions of (T  ', the determinant 
m 

of coefficients of the algebraic equations must vanish.  This leads to a 

characteristic equation of the following form: 

(ei2ir6- 1)3|A(6)| = 0, (22) 

where |A(6)| is a 3 by 3 determinant involving 5 in a transcendental form 

and material constants, u( \  n  ' and u ('k+1 , r/k+1^ of the adjacent mm      mm 

layers. Details of A (5) may be found in Ref. [14].  The general form of 

6, which are the eigenvalues of the problem., may be written as 

5n = n'   or 3n = (n " 2° ±  iY    (n-0,1,2,...), (23) 

where y is a constant related to elastic constants of adjacent plies. 

Thus, for each 5^ we have the eigenfunctions of the form Eqs 15 and 16 

whose coefficients may be determined from the remote boundary conditions 

other than Eq 19.  It is important to note that the 5 bounded by 

0 > Re[6n] > -1 (24) 

characterize the inherent stress singularities of the delamination crack 

stresses in a composite laminate. 

For cross-ply composite laminates, the differential operator L, 

vanishes identically. Thus, F(Z) and ^(Z) are uncoupled, and the form 

11 



of Eq 23 can be simplified and expressed explicitly as 

<5     = n,       or 
n 

1 l 

5n =   (n " 2?  * 27 £n{[b +  (b2  "  ^a2)T]/(2a)>' (25) 

where a and b are related to material constants S.. , S..   , \i.     , 
IJ   IJ     1 

-(k)   ,  (k+1) -(k+1) ,    .  .    ..  ,   T   , . . . 
M.   and y.    , p.    shown in Appendix 1.  In a limiting case of 

isotropic materials, it can be shown that 5 have the form, 
n 

«n - Cn - fj ± |r *n{[GCk) + G(k+1)(3 - 4v(k))] 

/[G(k+l)+G(k)(3_4v(k+l))]}> (26) 

where G and v denote the shear modulus and Poisson's ratio, respectively. 

The eigenvalues of Eq 26 were first obtained by William [1] and later by 

Zak, at al. [2] for interfacial cracks in isotropic media. 

12 



4.  DELAMINATION STRESS INTENSITY FACTORS AND ENERGY RELEASE RATES 

The eigenfunctions and the unknown constants for a. ; and o^>  in 
l      i 
fh) and afP) 
l      l 

Eqs 15 and 17 are determined by imposing appropriate (materials and 

geometric) symmetry and traction boundary conditions, which will be 

discussed later. Hence, complete stresses and displacements a        and 
l 

(a) 
ui  in the a-th lamina can be fully established.  Neglecting the 

higher-order terms, we note that the typical structure of near-field 

crack tip stresses can be shown to have the following form: 

where f   and g   are related to the material constants, geometry, 

and boundary conditions; 5. are eigenvalues bounded by 

-1 < Re[6 ] < 0 to insure the positive definiteness of strain energy 

of the elastic body.  It is clear that the eigenvalues which satisfy 

Eq 24 lead to asymptotic near field stresses.  For the convenience of 

(a) 
further development, the stress a.   around the crack tip may be re- 

written as 

-!  = I  a-M (x>y;0-) + 0(non-singular, higher-order terms), 
j-1 J      J 

(28) 

where a   is the j-th singular component of the stress a.   cor- 

responding to the eigenvalue 6. which meets Eq. 24. 

In the context of mechanics of fracture, it is possible to define 

the so-called stress intensity factors for the delamination in a manner 

analogous to that given in Refs. [4»6] by considering the interlaminar 

stresses ahead of the crack tip along the interface, i.e., 

13 



n     -6, 
K» lim I ^ x" 3CT  (x,0;S.), 
1  x+0+ j=l        J     J 

(29a) 

n      » 
KXT = lim  y/2Tx 3a,.(x,0;6.), (29b) 
11  x-*0+j=l       6j     J 

n      .. 
KTTT = lim I  /27x °3a.,(x,0;5 ) (29c) 
111  x->0+ j-1       4J     J 

where the superscript a is omitted, because tractions, a„,  a,   and a^, 

are continuous across the interface. 

While the stress intensity factors K , K  and K.^ describe the 

details of the delamination crack-tip field, the strain energy release 

rate G is also of significant interest, since this is a quantity 

physically measurable in experiments and mathematically well defined. 

The fracture energy release rate in a delaminated composite may be 

evaluated by using Irwin's virtual crack extension expression [15], 

G = GI + GII + GIII 

Ixm 
6 3+0 2Öß 

{a (r,0)[v(k)(6e-r,ir) - v(k+1) (fiß-r,-*) ] 
0  y 

+ T  (r,0)[u(k)(Sß-r,TT) - u(k+1)(5ß-r,-Tt)] 
xy 

+ T  (r,0)[w(k)(5ß-r,7T) - w(k+1) (6S3-r,-ir)]}dr , (30) 
yz 

where polar coordinates (r,<f>) are used for the convenience of computa- 

tion.  The interlaminar stresses, a   ,  T  , and T   in Eq 30, may be 
y  xy      yz 

obtained from the crack-tip stress field equations such as Eq 27.  The 

corresponding displacements are also those of the crack-tip field 

equations obtained in the previous section. 

14 



5.  NUMERICAL EXAMPLES AND DISCUSSION 

The formulation and analysis for the problem outlined in previous 

sections have been programmed into a solution scheme suitable for 

numerical computation.  For the purpose of illustrating the fundamental 

behavior of the delamination fracture in composite laminates, graphite- 

epoxy systems with symmetric (8/-9/-Ö/9) fiber orientation containing 

edge delamination cracks along the 9 and -9 ply interface are studied. 

The particular material system and ply orientations are selected here 

because they have been previously investigated in some detail. 

The composite laminate is subjected to a uniform axial extension and 

has a geometry shown in Fig. 1 with a width-to-thickness ratio 2b/2W 

and uniform ply thickness h..  Delamination cracks of length a,  are 

assumed to emanate from the edges of the composite.  Lamina properties 

typical of high-modulus unidirectional graphite-epoxy composite for 

aircraft construction are used in the computation (Table 1).  For com- 

posite laminates with the aforementioned laminate geometry and ply 

orientations, several geometric and material symmetry conditions may 

be introduced to simplify the formulation further.  The problem, there- 

fore, can be solved very conveniently and accurately. 

5.1 Symmetry and Boundary Conditions, and Further Simplifications 

The symmetric ply orientations and geometry of the composite 

laminate (Fig. 3) lead to the following conditions for displacements: 

15 



3u       3w      3v       A , /01   . 
—- = r— = r— = 0 onx = b-a, (31a) 9y       3y       3x 

^— = T— = T— = 0 ony= -h„, (31b) 
3x      3y      3y ] V 

where the origin of .the coordinates is moved to the left tip of the 

delamination.  The traction-free boundary conditions on edges and lateral 

surfaces of the composite laminate may be written as 

a=T  =T  =0        onx= -a, (31c) 
x   xy   xz 

a=x  = T  =0        on y = h,. (31d) 
y   xy   yz 1 

Thus, only a quarter of the laminate cross section needs to be considered. 

The boundary conditions, Eqs 31a-d, contain arbitrariness of rigid body 

displacements, which is a characteristic of traction boundary value 

problems. 

Since the eigen solutions, a;     , satisfy Eq 19 and interface con- 

tinuity conditions Eq 20, we require that a.   satisfy these conditions 

(a) 
also.  To determine d^  uniquely for Eqs 17 and 18, we further require 

the particular solutions satisfy the following conditions: 

u (p) = 0 on x = b-a, (32a) 

v(p) =0 on y = -h2, (32b) 

w(p) =0 at  (0,0,0). (32c) 

Substituting Eqs 17 and 18 into Eqs 19, 20 and 32 gives 

%(C0 -I ^k^Pk^ + ^1} Pk1}] <b " *>•     t"-1'2*     (33a) 
k=l 

16 



w<0>  - 0, (33c) 

4a)  - ^a)  - 0   . (33d) 

3 
u3      "TS[dk    qk      +dk      qk    ]> (33e) 

k=l 

and 

I   [d£>+d*>]--c£> (34a) 
k=i  K       K y° 

3 

j^k    \      + dk      \    ]   " Tyz°' (34b) 

I   [d^ya)  +d£o)ü<o)]   =x(a), (34c) ,^     k      k k        k xyo 

nW5?'^- nW-«>;«>,, 

k=l k=l 

Z   [d^a)(q^a)  + P^a)U^a))  + d^a)(^a)  + 7«° ^a))l   -  0. (34f) 
k=l 

Equations 34a-f give ten linear algebraic equations for twelve real 

unknowns for a.       and u.  .  Hence, we may set 
l      l J 

Im[d^a)] = 0 (35a) 

to reduce the additional degrees of freedom.  For symmetric angle-ply 

laminates, it can be shown that Eq 34f is satisfied identically. 

17 



Therefore, instead of using Eq 35a, it maybe required 

d3
(0° = 0. (35b) 

Since the complete solutions for stresses and displacements must 

satisfy the symmetry and remote boundary conditions, Eqs 31a-d, the 

following relations can be established immediately to evaluate a        and 

1 

afh) + afp) = 0       (1=1,5,6)   on x = -a, (36a) 

CT(h) + 0(P) = 0       (i=2,4,6)   on y = h,,        (36b) 
i     i 1 

and 

9u(h)+9u
(P>  n 3v(h)  3v^  n 3w<h>  3w^   . 

—     ^  =°'8T- + 3x^  =0'3y~+3y~ =°'   °n x = b^' 

(36c) 

3v
(h)

+3v^  n 3u<h>  3u<P>  n 3w(h>  3w^   . 
3T~+3x"  =  °'3x~+3x" 0'3y~+3y^ = °'       on     ? = "V 

(36d) 

By using the eigenfunctions derived previously and the boundary collocation 

method, the boundary conditions given in Eqs 36a-d can be matched con- 

veniently in the least-square sense.  Thus, the eigen solutions for 

a and u.   can be determined.  Numerical solutions for the problem 
l       x 

by using the collocation procedure are related to the truncation of 

eigenfunctions and number of collocation stations.  Due to space 

limitation, the detailed discussion of solution convergence and accura- 

cy is reported elsehwere [16] •  The results presented in this section 

are from collocation calculation, which has a maximum mismatch within 

one percent deviation from prescribed boundary conditions. 
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5.2  Stress Singularity for Delamination in Composites 

Now consider a delamination lying between 8 and -6 plies (Fig. 1) 

in a graphite-epoxy composite with ply properties given in Table 1.  The 

interface continuity and traction boundary conditions along crack sur- 

faces lead to a standard eigenvalue problem for the homogeneous solution, 

as discussed in Section 3.3.  The eigenvalues 6 obtained from the °        m 

transcendental equation provide basic structures of near-field stress 

and displacement solutions for the delamination problem.  The order of 

stress singularity and the asymptotic nature of the crack tip stresses 

depend on the values of 6 , which satisfy the constraint condition of 

Eq 24. Thus, the eigenvalues corresponding to this restriction are of 

fundamental importance in understanding the delamination failure be- 

havior.  For edge delaminated (±8)  graphite-epoxy composites with 
s 

various fiber orientations, the eigenvalues 6 , which satisfy the m 

aforementioned constraint condition, are found by the present eigen 

analysis and given in Table 2. The stress singularities for an inter- 

face crack between two highly anisotropic laminae are observed to con- 

tain a pair of complex conjugates, <5  „ = -0.5±iy, and a constant, 

5 = -0.5.  This situation is unique and different from that of an 

interface crack between two isotropic or orthotropic media in the sense 

that 5- , <5_ and 5, exist simultaneously in the present delamination 

problem.  In the degenerated cases such as ±8 = 0° and 90°, the composite 

laminates become unidirectional.  The delamination is located in an 

orthotropic material; the classical inverse square-root singularity 

for crack-tip stresses is recovered fully.  It is noted that the 
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present physical model and the elgenfunction analysis lead to an oscilla- 

tory stress singularity, as are the cases of interface cracks in iso- 

tropic or orthotropic materials. 

5.3 Asymptotic Stress Field Around Delamination 

Complete solutions for delamination cracks in finite dimensional 

composite laminates are obtainable by using the present Lekhnitskii's 

complex stress potential formulation and eigenfunction expansion. With 

the aid of the boundary collocation method, the asymptotic stress field 

around a delamination may be expressed in a general form as 

3        A CJ_. -0.5+iy n c • 

3       kl±       Jk k        j(k+3) jk k 

_-0.5-iy       _n c _-0.5 
+ E.,.,„, Z      )+(F.. Z.U'D +  F. (       . Z   )} 

j(k+3) jk k     j(k+3) 

(j=l,2, ,6), (37) 

where D., , E., , and F., are known quantities satisfying the following 
JK   JK        JK 

relations: 

jk   j(k+3)    j (k+3)   jk    jk   j (k+3) 

to insure a. being real. More concisely, a.   can be written as 
3 3 

a.  = r~ 2 [A.cos(y An r) + B.sin(y An r) + C.]. (39) 

For illustrative purposes, the structures of near-field stresses and 

displacements ahead of a delamination (r,0) are given for a 
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(450/-45°/-450/45°) graphite-epoxy laminate with h = h = 1 in., 

o. -  1 in. and 2b/h = 4 subjected to e = e   as follows: 

a   (r,0) = [0.04339cos(0.03434 In  r)+0.39498sin(0.03434 in  r)] r-0'5 

+ 0(1), (40a) ' 

-0.5 
T  (r,0) = [0.45347 cos(0.03434 In  r)-0.04981sin(0.03434 An r)] r 
yz 

+ 0(1), (40b) 

T  (r,0) =-0.002449 r  ' + 0(1) , (40c) 

and 

u(1)(6ß-r,^) = {-0.29576cos[0.03434 in(Sß-r)] 

+ 0.01208sin[0.03434 £n(6ß-r)]}(5ß-r) 
0.5 

- 0.003403(6ß-r)0,5 + 0(1), (41a) 

v(1)(6g-r,iT) = {0.02888cos[0.03434 in(6ß-r)] 

+ 0.70682sin[0.03434 &n(Sß-r)]}(5ß-r)0'5 

+ 0(1), (41b) 

w(1)(6ß-r,TT) = {0.61564 cos[0.03434 Än(Sß-r)] 

- 0.025155 sin[0.03434 An(5ß-r)]}(Sß-r)0,5 

+ 0.001602(63-r)0,5 + 0(1), (41c) 

where the components of stress are scaled by 106 x e , and the 

displacements by £ .  It is noted that the elastic stresses near the 
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delamination crack tip in a composite laminate possesses the well known 

oscillatory behavior, and the displacement field also exhibits an 

oscillatory nature with crack surfaces overlapping each other.  As 

first pointed out by Malyshev, et al. [7] and later by England [5] and 

Erdogan [8] for interfacial cracks between dissimilar isotropic media, 

the phenomenon of crack surface overlapping is confined to an extremely 

small region and the interpenetration is not of significance in prac- 

tical terms of fracture mechanics.  However, for certain combinations 

of material properties, ply orientations and loading conditions in 

composite laminates, the crack surface contact region has been found to be 

extremely large [16].  Thus the current model needs to be modified to 

account for the crack surface closure and contact stresses [16].  Studies 

on interface crack closure in dissimilar isotropic media were reported 

recently by Comninou [17], Atkinson [18] and Achenback [11]. 

5.4 Delamination Crack Tip Stress Intensity Factors 

Since the Irwin fracture criterion is local in nature and requires 

precise knowledge of the local conditions at the delamination crack tip, 

the stress intensity solutions are obviously of great significance. 

According to the present fracture mechanics theory of composite delami- 

nation, stress intensity factors, K , K  and K  , may be evaluated by 

the rigorous analysis described in Section 4.  The K^, K  and K 

lead to detailed information of the stress and displacement fields in 

the neighborhood of the delamination crack tip, and may relate to the 

onset of delamination extension upon reaching a critical level.  The 
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magnitudes of K. shown in the formulation depend on the delamination 

length, ply orientations, laminate geometry, and loading conditions. 

Consider the (9/-e/-8/9) graphite-epoxy composites with various 

fiber orientations subjected to uniform axial extension e . For illus- 
z 

trative purposes, we choose a composite with a width-to-thickness ratio 

2b/(2h) equal to 8, ply thickness h = h. s 1 in., and delamination 

length a  = 1 in.  The mixed mode K , K  and K T are determined and 

given in Table 3 for various 9's.  It is observed that even though the 

composite laminate is under the simplest loading condition, the delamina- 

tion crack tip response is very complicated due to the complex inter- 

laminar stress distribution, the nonhomogeneity of the solid, the aniso- 

tropic ply properties, and the unusual delamination configuration with 

respect to the loading direction.  The out-of-plane tearing mode stress 

intensity factor K   caused by interlaminar shear T  is about one or 

two  orders of magnitude higher than KT and K  in general in the lami- 

nates studied.  The opening mode stress intensity K is also very sig- 

nificant due to the interlaminar normal stresses cr .  The simultaneous 

presence of KT, K  and K   in the delamination problem is unique to 

angle-ply fiber composites, and is not observed in fracture problems 

for bonded dissimilar isotropic media in general.  The delamination be- 

havior is inherently three dimensional in nature; for composites with 

more general laminations, crack geometry and loading conditions, fully 

three-dimensional stress and fracture analyses are essential for ob- 

taining complete information. 

The influence of laminate geometric variables on the delamination 

behavior is best illustrated by examining the changes of K , K  and 
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K   with the relative thickness of upper and lower plies h /h in a 

(450/-45°/-450/45°) graphite-epoxy composite (with h1 + h_ = W = 2 in.). 

Given the crack length, (a = 1 in.), laminate dimensions (2b = 4 in.), 

and the loading condition as previously, the delamination stress inten- 

sities for various h,/h 's are shown in Fig. 4.  The crack tip tear- 

ing and opening stresses T  and a    have a maximum intensification as 

the ply thicknesses h. become identical, i.e., h^/h- = 1.  The K , 

however, reaches a minimum due to the reduction of T  . It should be 

noted here that the K , K T and K   depend on material constants of 

all plies as well as the overall geometry. Therefore, the dependency 

of K. on ply properties is not a simple matter of identifying them with 

geometric variables, and they may not have the simple physical inter- 

pretation as in the homogeneous case. 

5.5 Strain Energy Release Rates for Delamination 

The equilibrium and stability of delamination are commonly examined 

from an energy rate point of view.  The strain energy release rate G de- 

fined in Eq 30 is a quantity characterizing the driving force for delam- 

ination extension.  The delamination-growth driving force can be easily 

determined after the establishment of the local asymptotic stress and 

displacement fields. For the edge delamination problem in graphite-epoxy 

composites considered here, the G value may be obtained in a general 

form as 

G = Gx + Gjl +  GIir 

1 
= lrm 
Sß+0 25p i 

{AICOS[Y ^nC  "  )] + A0sin[Y £n( 
P " r)] + A,} 

0  1 2 r       3 

rß ~ r)   dr , (42) 
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where y = Im[<5-].   Equation 42 has the form similar to the one derived 

previously for an elastic-half space problem by Willis [19].  The singu- 

lar integration may be carried out by defining an anlytical function 

with the cut 0 < x < 6S 

. 0.5+iy 
f(z) = (2 ~ P) (43a) 

so that we have 

63 6g - r)
0,5co8[Y &n(5g ~ r)]dr = Tr<Sf3/(e~Y1T + eY1T),       (43b) 

0   r 

63 ..    0.5       Aß 
(°P " r)  sinfy *n(  " r)]dr - 2 YTrS3/(e~

Y7T + eY^).     (43c) 

Thus, the total energy release rate G can be determined immediately by 

substituting Eq 43 into Eq 42.  Table 4 shows the change of G values with 

ply orientations for the (8/-8/-9/6) graphite-epoxy composites with the 

material properties in Table 1. 

To study the basic nature of delamination extension in angle-ply 

composites, strain energy release rates in the (45°/-450/-450/45°) 

graphite-epoxy with various crack lengths are examined.  Effects of 

laminate width on delamination crack extension is also investigated. 

The change of total strain energy release rate G with delamination length 

a  is given in Fig. 5 to illustrate fundamental characteristics of the 

delamination fracture. For the composite laminates with various 2b/2h's, 

the G is observed to change with delamination length in a unique manner. 

The maximum energy release rate or crack extension driving force occurs 

at a delamination length approximately equal to one or two ply thick- 

nesses in the composite studied, depending on the (2b/2h) ratio. As 
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the delamination exceeds this characteristic dimension, G decreases 

monotonically. 

On the basis of fracture mechanics, several important features 

regarding delamination fracture are revealed from the Figure. Assuming 

that the material resistance to delamination growth remains constant 

(i.e., the failure criterion, G = constant, is used), we can immedi- 

ately conclude that there exists a critical delamination length asso- 

ciated with the maximum G (for example, a* -  2h for the case b/h = 8) 

for each composite laminate; the word "critical" means the one that 

experiences stable crack extension at the lowest load.  It also indi- 

cates that any interlaminar edge flaw a    inherently in the composite, 

which is less than a  , will experience rapidly unstable growth as the 

load or G reaches a critical level, and is anticipated to be arrested 

at a later stage. Any initial delamination greater than a'  will ex- 

perience a stable growth under monotonically rising loads; that is, 

there exists an inherently built-in crack arrest mechanism for edge 

delamination.  These phenomena predicted by the G - a  curve have been 

noted by several researchers conducting experimental and analytical 

studies on the delamination fracture.  The a    may be an important 

quantity in the life prediction for delaminated composite materials 

and structures subjected to static and cyclic loading. 

The delamination strain energy release rate is also a function of 

other geometric variables. For example, G is significantly affected 

by the relative ply thickness l^/b^.  In a (450/-45°/-450/45°) graphite- 

epoxy with a geometry given before, the change of G with h^/b^ is given 
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in Fig. 6, where maximum driving force occurs at h- = h indicating the 

criticality of the relative ply thickness to delamination fracture in 

composites. 

It is noted here that, even though the near-field stresses possess 

an oscillatory singularity and K. may not have the usual significance 

attached to them as in the cohesive (homogeneous) case, the energy re- 

lease rate G is well defined mathematically and physically, and should 

be the quantity of major interest.  The G and its components G , G  and 

G T can be evaluated theoretically and experimentally to provide a 

basic measure of the delamination fracture. 
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6.  SUMMARY AND CONCLUSIONS 

An analytical method for studying delamination is presented in this 

paper.  Fundamental nature of edge delamination in advanced fiber composite 

laminates is examined. Based on the theory of anisotropic elasticity, 

the composite delamination problem is formulated by using Lekhnitskii's 

complex-variable stress potentials and an eigenfunction expansion method. 

Exact orders of the three-dimensional stress singularity in a delamina- 

tion crack tip region are determined from the eigen analysis. With the 

aid of a boundary collocation technique, complete stress and displacement 

fields in a finite-dimensional, delaminated composite are fully determined. 

Fracture mechanics parameters such as the mixed-mode stress intensity 

factors and associated energy release rates for edge delamination are 

calculated explicitly.  Solutions are obtained for edge-delaminated 

(9/-9/-8/8) angle-ply composites under uniform axial extension.  Effects 

of delamination lengths, fiber orientations, lamination and geometric 

variables are studied in detail. 

Based on the information given in the previous sections, the follow- 

ing conclusions may be drawn: 

1. An analytical method based on the theory of anisotropic 

elasticity is successfully developed to study edge de- 

lamination in angle-ply composite laminates. Formulation 

of the problem is carried out by using Lekhnitskii's complex 

stress functions.  Stress singularities for delamination between 

highly anisotropic laminae are obtainable by using an eigen- 

function analysis.  The order of delamination crack-tip 
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stress singularity is different from that of an interface 

crack between dissimilar isotropic or orthotropic media 

by the simultaneous presence of three characteristic 

eigenvalues of -0.5+iy, -0.5-iy, and -0.5. 

3. The fracture mechanics concept may be extended to delamina- 

tion problems in anisotropic composite laminates by properly 

defining the interlaminar crack-tip stress intensity factors 

such as Eqs 29a-c and strain energy release rates. For 

angle-ply composite laminates, K^, K  and K-r-r-r always 

occur simultaneously for an edge delamination with KTTT being 

one or two orders of magnitude higher than the other two. 

4. Complete stress and displacement fields in a delaminated 

composite may be accurately determined by a combined eigen- 

function expansion and a boundary collocation method.  The 

asymptotic solutions are characterized by K. (i=I,II,III) 

and possess the well known oscillatory behavior.  The crack 

surface overlapping could be very large in some composite 

systems with certain combinations of fiber orientations, ply 

stacking sequences, and loading conditions; modifications 

[16] of the current model to include crack closure may be 

needed for these cases. 

5. The crack extension driving force or strain energy release 

rate for edge delamination in composite laminates can be ac- 

curately determined by using Irwin's crack extension 

concept. Delamination stability in composite laminates 
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under monotonically rising loads can be assessed for any 

inherent interlaminar flaw relative to the critical de- 

lamination size a*  obtained in the current Q - a  curve. 
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TABLE 1 

Material's Constants for Graphite/Epoxy Composite Lamina 

E = 20.0 x io6 psi 
JL 

ET = 2.1 x 10
6 psi 

GLT = GLZ 
= GTZ 

= °'85 X 106 PSl 

\T " \Z  = VTz = °'21 
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TABLE 2 

Dominant Stress Singularities for Delamination in (6/-6/-6/9) 
Graphite-Epoxy Composites 

0° - 0.5 - 0.5 

15° - 0.5 ± 0.006421 - 0.5 

30° - 0.5 ± 0.02399i - 0.5 

45° - 0.5 ± 0.03434i - 0.5 

60° - 0.5 ± 0.029421 - 0.5 

75° - 0.5 ± 0.01579i - 0.5 

90° - 0.5 - 0.5 
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TABLE 3 

Stress Intensity Factors K^ for Edge Delamination in (9/-9/-G/0) 

Angle-Ply Graphite-Epoxy Composite1" Subjected to Uniform Axial Strain 

±8 

15° 

30° 

45° 

60° 

75° 

0.08645 

0.2330 

0.1347 

0.02025 

0.006268 

K. tt 
II 

K 

0.01214 

0.03330 

0.01380 

0.001360 

-0.0002948 

III 
tt 

-4.5588 

-3.6604 

-1.2968 

-0.1775 

0.0818 

K. (psi - /in.) are scaled by 10° e 
l r z 

' a = h1 = h = 1 in., b = 8 in. 

''For the delamination crack in the first quadrant 
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TABLE 4 

Energy Release Rate G for Edge Delamination in (O/-9/-9/0) Angle - Ply 
Graphlte-Epoxy Compositet Under Unlaxial Extension £z 

±0 

15° 

30° 

45° 

60° 

75° 

f 
a = h. = h_ 1 in., b = 8 in. 

G/106 e2 
z 

(psi- -in.) 

8.1076 

4.0506 

0.5740 

0.0138 

0.0036 
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FIG. 2 

EDGE DELAMINATION BETWEEN kTH AND (k+l)TH PLIES 
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APPENDIX 1 

Materials Parameters for ^elamination Crack-Tip Eigenvalues 
in Cross-Ply Composite Laminate 

5 = n    or n 

5 = (n - h  ±  |r £n{[b + (b2 - 4a2)2]/(2a)} n   '   2'   ~  2TT 

where 

a - -M^nf+1> - M^M^ + M^M^ + ü™  5<k+l) 

+ M/
(k) + M<

k+1\ 4     4 

b - -ZM^00 + M<k>M<k> + Mf} M<k > - 2M{k)Mf+1> - 2M2
(k>Mf+1> 

- 2 Mf > Mf
+1) - 2Mf > Sf+1> - 2M1

(k+1)M2
(k+1) 

+ M(k+l)M(k+l)+-(k+l)-(k+l)5 

and 

M2a> " \  *£'< "I"'«?' «?' + «2Ca)» - ^1°' ^X" + »?'». 

Ca) _ ~(a) Ca) (a)  -(a) 
M3  " bll ul y2  " b12 

[%U    ~  2 ~SS)(yia) + y2a))^l(a) + ^2a))]' 
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